

CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG) HG2022

Gerard Lawler¹, Atsushi Fukusawa¹, Zenghai Li³, Nathan Majernik¹, Jake Parsons¹, Sami Tantawi³, Yusuke Sakai¹, and James Rosenzweig¹ ¹ UCLA, Los Angeles, CA 90095 ² ASU, Tempe, AZ, 85281 ³ SLAC, Menlo Park, CA, 94025

- 1. Background & motivations
 - 2. CYBORG Design
- 3. Fabrication status & LLRF
 - 4. Future Steps
 - 5. Conclusions

- 1. Cavity fabrication & structure test
- 2. Infrastructure development
- 3. Low temperature emission/photocathode test bed

RR Robles et al. *Physical Review Accelerators* and *Beams* 24 (6), 063401

1) CYBORG Functions (2)

- Collaboration within NSF
 Center for Bright Beams
- Low temperature at increases launch field and decreases cathode mean transverse energy but also QE
- Test bed for cathodes cold & high field environment

$$B_{e,b} \approx \frac{2ec\varepsilon_0}{k_B T_c} \left(E_0 \sin\varphi_0\right)^2$$

J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, J. Appl. Phys. 124, 244903 (2018).

L. Cultrera et al., Appl. Phys. Lett. 103, 103504 (2013).

1) Beamline development phases

- Reentrant cavity with high shunt impedance
- Peak electric field around cathode surface

Parameter	295K	77K	45K
Launch field	-	120 MV/m	120 MV/m
Frequency	5.695 GHz	5.712 GHz	5.713 GHz
β	0.7	4	5.3
Q0	8579	23000	38000
Filling time	-	0.26 us	0.3 us
RF Power requirement	-	0.52 MW	0.48 MW
Energy deposition	-	0.17 J/pulse	0.1 J/pulse

- Reentrant cavity with high shunt impedance
- Peak electric field around cathode surface

Parameter	295K	77K	45K
Launch field	-	120 MV/m	120 MV/m
Frequency	5.695 GHz	5.712 GHz	5.713 GHz
β	0.7	4	5.3
Q0	8579	23000	38000
Filling time	-	0.26 us	0.3 us
RF Power requirement	-	0.52 MW	0.48 MW
Energy deposition	-	0.17 J/pulse	0.1 J/pulse

Copper pillbox cavities used for Cband low level LLRF

2) Surface Sensitivity

- Cryogenic temperature provides additional RF stability
- Slater perturbation theory gives frequency change from small displacement of one surface
- Default 10 um
- For surfaces of high field tolerance reduced to 5 um (detuning > ≈ |0.2| MHz w/ 10 um perturbation, most |10s| kHz)
- Adding in quadrature leads to 1.6 MHz from following

$$\Delta f_i = \Delta s_i \frac{f_0}{4U} \int_{S_i} \left(\mu \left| H_0 \right|^2 - \epsilon \left| E_0 \right|^2 \right) dS$$

2) Surface Sensitivity

- Forward compatibility needed for INFN style mini puck, etc.
- For phase 1 of test bed, CF flange sealed off w/ blank from back of cavity and test copper cathode

Plug directly into cavityUseful for 1.6 cell to

max gradient

2.

 Good for cathode tests
 High gradient (120 MV/m) but lower than plug alone

No cathode exchange Highest achievable gradients

- Split seam for brazing necessitated by tolerance location
- Drawings with fully removable backplane based on FERMI gun design

 Steady state thermal simulation results w/ 15W cooling from press fit with 3W heat leak budget

Description	Materials	Equivalent Area	Equivalent Power @ 65K	Equivalent Power @ 45K
Downstream CF flange	stainless, edge welded bellows	85 mm^2	4.8 W	5.2 W
Waveguide	Stainless	588 mm^2	6.6 W	7.1 W
Supports	Stainless + 2" G10	TBD	0.6 W	0.8 W
Diagnostic probes	Copper wiring	1.6 mm^2	≈ 0.1 W	≈ 0.1 W
Radiation	-	25000 mm^2	< 0.1 W	< 0.1 W
Pumping on dummy side	TBD	TBD	TBD	TBD
Upstream load lock	TBD	TBD	TBD	TBD
1Hz pulse heating	-	TBD	≈ 0.1 W	≈ 0.1 W

- Application to cryogenics worth working through similar RF pulsed heating calculation from Pritzkau (below)
- valid for linear bulk resistivity (also below)
 - Pritzkau linear model used for dashed curve previously (right)

 $\rho_{res}(T) = 7.012 \times 10^{-11} T - 3.865 \times 10^{-9} (\Omega \cdot m), \qquad 273 K \le T \le 800 K$

• bulk electric resistivity as function of temperature based on phonon model

$$ho(T)=Aigg(rac{T}{\Theta_R}igg)^n\int_0^{\Theta_R/T}rac{t^n}{(e^t-1)(1-e^{-t})}dt$$

- Application to cryogenics worth working through similar RF pulsed heating calculation from Pritzkau (below)
- valid for linear bulk resistivity (also below)
 - Pritzkau linear model used for dashed curve previously (right)

 $\rho_{res}(T) = 7.012 \times 10^{-11} T - 3.865 \times 10^{-9} (\Omega \cdot m), \qquad 273 K \le T \le 800 K$

• bulk electric resistivity as function of temperature based on phonon model

$$ho(T)=Aigg(rac{T}{\Theta_R}igg)^n\int_0^{\Theta_R/T}rac{t^n}{(e^t-1)(1-e^{-t})}dt$$

- 295K resonance 6 MHz higher than intended and coupling lower
- Attributed to presence of braze material
- Q0 = 4200 with no clamp, up to 7649 so far

	Measurement	Design/Simulation
fO	5.701 GHz	5.695 GHz
β	0.52	0.7
QL	≈ 5000	5167
Q0 (partial clamp)	≈ 4600	-
Q0 (clamped)	7649	8579

3) Cband RF Power

- 15 MHz bandwidth of klystron cryo outside range
- Verify bandwidth using new C-band mini-modulator

Parameter	100K
Launch field	120 MV/m
Frequency	5.711 GHz
β	3.1
Q0	18000
Filling time	0.25 us
RF Power requirement	0.56 MW
Energy deposition	0.22 J/pulse

Design w/ simulated cool down

4) Backplane Modifications

- 2. Small hole for possible bead pull measurement
- 3. Optimization for acceptable cathode plug

4) Phase1:config1

- Config 1 Goals:
 - -LLRF (bead drop)
 - -UHV test
 - -cooldown & temperature stability
 - -high power RF tests
 - Optimize RF pulse heating + cooling
 - -SHI vibration isolation

- 1. CYBORG is part of planned high gradient cryogenic cathode test bed and stepping stone to high gradient cryogenic photoinjector
- 2. Preliminary LLRF tests begun & ongoing
- 3. Next steps are finishing infrastructure for high powered tests and beamline

- D. Dowell and J. Schmerge, Phys. Rev. ST Accel. Beams 12, 074201 (2009).
- M. C. Divall, E. Prat, S. Bettoni, C. Vicario, A. Trisorio, T. Schietinger, and C. P. Hauri, Phys. Rev. ST Accel. Beams 18, 033401 (2015).
- T. Vecchione, Proceedings of FEL2013 (JACOW, 2013), TUPSO83.
- J. Feng, J. Nasiatka, W. Wan, S. Karkare, J. Smedley, and H. A. Padmore, Appl. Phys. Lett. 107, 134101 (2015).
- L. Cultrera, I. Bazarov, A. Bartnik, B. Dunham, S. Karkare, R. Merluzzi, and M. Nichols, Appl. Phys. Lett. 99, 152110 (2011).
- L. Cultrera, S. Karkare, B. Lillard, A. Bartnik, I. Bazarov, B. Dunham, W. Schaff, and K. Smolenski, Appl. Phys. Lett. 103, 103504 (2013).
- G. S. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov, and H. A. Padmore, Phys. Rev. Accel. Beams, vol. 21,p. 093 401, 9 Sep. 2018.
- I. Bazarov et al., Phys. Rev. Lett. 102, 104801 (2009)
- J.B. Rosenzweig, A. Cahill, B. Carlsten et al.Nuclear Inst. and Methods in Physics Research, A 909 (2018) 224–228
- D. H. Dowell and J. F. Schmerge, Phys.Rev. ST Accel. Beams, vol. 12, p. 074 201, 7 Jul. 2009.
- J. Maxson, L. Cultrera, C. Gulliford, and I. Bazarov, Applied Physics Letters, vol. 106, no. 23, p. 234 102, 2015
- H. Lee, X. Liu, L. Cultrera, B. Dunham, V. O. Kostroun, and I. V. Bazarov Rev. Sci. Instrum. 89, 083303 (2018).
- J B Rosenzweig et al 2020 New J. Phys. 22 093067
- G. E. Lawler, A. Fukasawa, N. Majernik, M. Yadav, A. Suraj, and J. B. Rosenzweig, "Rf testbed for cryogenic photoemission studies", presented at the 12th Int. Particle Accelerator Conf. (IPAC'21), Campinas, Brazil, May 2021, paper WEPAB096
- D. Marx et al. Phys. Rev. Accel. Beams 21, 102802 (2018).